男人网站,国产精品对白刺激久久久,性XXXX欧美老妇506070,哦┅┅快┅┅用力啊┅┅在线观看

三分鐘看懂人工智能核心技術(shù):深度學(xué)習(xí)

人工智能
2019
09/09
14:09
人工智能網(wǎng)
分享
評論

來源:人工智能網(wǎng)

自從2012年以來,深度學(xué)習(xí)(Deep Learning)就以一種勢如破竹之勢突破了一個個經(jīng)典的人工智能問題。面對人工智能的快速發(fā)展,你不想了解它的基本工作原理嗎?

想搞清楚什么是深度學(xué)習(xí),要先從人工智能說起,自從 1956 年計算機科學(xué)家們在達(dá)特茅斯會議(Dartmouth Conferences)上確認(rèn)人工智能這個術(shù)語以來,人們就不乏關(guān)于人工智能奇思妙想,我們夢想著擁有人類五感(甚至更多)、推理能力以及人類思維方式的神奇機器。如今,雖然夢想的局面還沒有出現(xiàn),但是稍微弱一點的人工智能已經(jīng)大行其道了,比如:圖像識別、語音識別、多語言翻譯等。

機器學(xué)習(xí)是實現(xiàn)人工智能的一種重要方法。機器學(xué)習(xí)的概念來自早期的人工智能研究者,簡單來說,機器學(xué)習(xí)就是使用算法分析數(shù)據(jù),從中學(xué)習(xí)并自動歸納總結(jié)成模型,最后使用模型做出推斷或預(yù)測。與傳統(tǒng)的編程語言開發(fā)軟件不同,我們使用大量的數(shù)據(jù)送給機器學(xué)習(xí),這個過程叫做“訓(xùn)練”。

深度學(xué)習(xí) ( Deep Learning ) 是機器學(xué)習(xí)中近年來備受重視的一支,深度學(xué)習(xí)根源于類神經(jīng)網(wǎng)絡(luò)模型,但今日深度學(xué)習(xí)的技術(shù)和它的前身已截然不同,目前最好的語音識別和影像辨識系統(tǒng)都是以深度學(xué)習(xí)技術(shù)來完成,像各手機廠商宣傳的AI拍照功能,以及此前紅遍大街小巷的AlphaGo都是基于深度學(xué)習(xí)技術(shù),僅僅是應(yīng)用場景不同。

深度學(xué)習(xí)的基礎(chǔ)是大數(shù)據(jù),實現(xiàn)的路徑是云計算。只要有充足的數(shù)據(jù)、足夠快的算力,得出的“結(jié)果”(宏觀上呈現(xiàn)機器的某種智能化功能),就會更加準(zhǔn)確。目前,基于大數(shù)據(jù)、云計算這種智能化操作路徑,可以在深度神經(jīng)網(wǎng)絡(luò)框架下來更好解釋。

深度神經(jīng)網(wǎng)絡(luò)也被稱為深度學(xué)習(xí),是人工智能領(lǐng)域的重要分支,深度神經(jīng)網(wǎng)絡(luò)目前是很多現(xiàn)代AI應(yīng)用實現(xiàn)的基礎(chǔ)。自從深度神經(jīng)網(wǎng)絡(luò)在語音和圖像識別任務(wù)中展現(xiàn)出突破性成果后,使用深度神經(jīng)網(wǎng)絡(luò)的應(yīng)用數(shù)量就呈爆炸式增長。

目前這些深度神經(jīng)網(wǎng)絡(luò)方法被大量應(yīng)用在自動駕駛、語音識別、圖像識別、AI游戲等領(lǐng)域。在很多領(lǐng)域,深度神經(jīng)網(wǎng)絡(luò)跟早期的專家手動提取特征或制定規(guī)則不同,深度神經(jīng)網(wǎng)絡(luò)的優(yōu)越性能來自于在大量數(shù)據(jù)上使用統(tǒng)計學(xué)習(xí)方法,從原始數(shù)據(jù)中提取高級特征的能力,從而對輸入空間進行有效的表示。

實際上,這種表示的過程就包含對大量數(shù)據(jù)計算的過程,因為針對某種特定功能的最終呈現(xiàn)的超高的準(zhǔn)確性,是以超高的計算復(fù)雜度為代價的。

而通常我們所說的計算引擎,尤其是GPU,就是深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)。因此,能夠在不犧牲準(zhǔn)確性和增加硬件成本的前提下,提高深度神經(jīng)網(wǎng)絡(luò)的能量效率和吞吐量的方法,對于深度神經(jīng)網(wǎng)絡(luò)在AI系統(tǒng)中更廣泛的應(yīng)用是至關(guān)重要的。

目前,國內(nèi)一些知名大公司近些年的研究人員已經(jīng)更多的將關(guān)注點放在針對深度神經(jīng)計算開發(fā)專用的加速方法,并著手研發(fā)人工智能專用芯片,也就是真正的人工智能芯片。

所謂人工智能芯片,一般是指針對人工智能算法設(shè)計的ASIC(專用芯片)。雖然傳統(tǒng)的CPU、GPU也都可以拿來執(zhí)行人工智能算法,但是這些芯片要么計算速度慢,要么功耗大,這么多缺點使得它們在很多場合是不能用的。

比如,自動駕駛的汽車需要人工智能芯片,因為汽車在行駛過程中需要識別道路行人以及紅綠燈的變化狀況,這些情況有時候是突發(fā)的,如果我們利用傳統(tǒng)的CPU去做這個突發(fā)路況計算,因為CPU不是專職干人工智能計算的,所以它的計算速度慢,很可能綠燈已經(jīng)變成紅燈了,我們的自動駕駛汽車還沒有剎車。

如果換成用GPU,計算速度確實要快很多,但這個時候的計算功耗非常大,電動汽車的車載電池?zé)o法長時間支撐這個功能,而且大功率芯片會導(dǎo)致車體發(fā)熱,容易引發(fā)油箱自燃。而且GPU一般價格昂貴,普通消費者也很少能買得起這種使用大量GPU芯片的自動駕駛汽車。因此,在人工智能領(lǐng)域,開發(fā)專用芯片成了必然趨勢。

(行業(yè)針對不同場景開發(fā)的專用芯片技術(shù)實現(xiàn)路徑)

目前市場上可以買到的人工智能芯片按照處理任務(wù)的不同可以分為兩類。

——面向訓(xùn)練和推斷(Inference),這個工作GPU可以干,CPU也可以干,F(xiàn)PGA也可以干。但如果開發(fā)人工智能的芯片,則干得更好。因為人工智能芯片是專業(yè)干這個的,相當(dāng)于是“專家”。

——推斷加速芯片。這類芯片就是把神經(jīng)網(wǎng)絡(luò)訓(xùn)練好的模型放在芯片上跑。比如寒武紀(jì)的神經(jīng)網(wǎng)絡(luò)芯片,深鑒科技的DPU,地平線機器人的BPU都是這類產(chǎn)品。

如果按使用場景劃分,人工智能芯片主要分為云端和終端芯片。

目前主流的深度學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)算法包括訓(xùn)練和推斷兩個環(huán)節(jié)。由于訓(xùn)練需要大量數(shù)據(jù)去訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),因此訓(xùn)練主要在云端進行。比如百度在2018年的AI開發(fā)者大會上推出的昆侖芯片——這是中國首款云端全功能AI芯片。而終端芯片更側(cè)重低成本和低功耗,目前中國的人工智能芯片初創(chuàng)企業(yè)主要布局在這個領(lǐng)域。

那么,人工智能芯片是如何工作的呢?在神經(jīng)網(wǎng)絡(luò)領(lǐng)域,一個子領(lǐng)域被稱為深度學(xué)習(xí)。最初的神經(jīng)網(wǎng)絡(luò)通常只有幾層的網(wǎng)絡(luò)。而深度網(wǎng)絡(luò)通常有更多的層數(shù),今天的網(wǎng)絡(luò)一般在五層以上,甚至達(dá)到一千多層。

目前在視覺應(yīng)用中使用深度神經(jīng)網(wǎng)絡(luò)的解釋是:將圖像所有像素輸入到網(wǎng)絡(luò)的第一層之后,該層的加權(quán)和可以被解釋為表示圖像不同的低階特征。隨著層數(shù)的加深,這些特征被組合,從而代表更高階的圖像特征。

當(dāng)然,一片在指甲蓋大小的面積上集成了超過 55 億個晶體管的 AI 芯片不可能只用來拍拍照這么簡單。目前手機上已經(jīng)有語音服務(wù)、機器視覺識別、圖像處理等智能應(yīng)用,未來還會增加包含醫(yī)療、AR、游戲AI 等更多元化的應(yīng)用類型。

那么語音服務(wù)、機器識別、圖像自動處理這些功能,在微觀層面的機制如何運行的?

以AI拍照拍攝一只在混亂背景中的貓咪為例,當(dāng)圖片進入攝像頭中的圖片在表層時,該層的加權(quán)可能被“認(rèn)定”為一直老虎,但當(dāng)隨著加權(quán)層數(shù)的不斷增加,顯現(xiàn)的結(jié)果就會越來越精確,不僅能識別圖片中是一只貓,而且還能進一步識別出貓的周圍環(huán)境:有一片草地,天空是藍(lán)的,貓站在臺階上等等更高階的圖像特征。

深度學(xué)習(xí)網(wǎng)絡(luò)在近些年得到巨大成功,主要是由三個因素導(dǎo)致的。

首先是訓(xùn)練網(wǎng)絡(luò)所需的海量信息。學(xué)習(xí)一個有效的表示需要大量的訓(xùn)練數(shù)據(jù)。目前Facebook每天收到超過3.5億張圖片,沃爾瑪每小時產(chǎn)生2.5Pb的用戶數(shù)據(jù),YouTube每分鐘有300小時的視頻被上傳。因此,云服務(wù)商和許多公司有海量的數(shù)據(jù)來訓(xùn)練算法。

其次是充足的計算資源。半導(dǎo)體和計算機架構(gòu)的進步提供了充足的計算能力,使得在合理的時間內(nèi)訓(xùn)練算法成為可能。

最后,算法技術(shù)的進化極大地提高了準(zhǔn)確性并拓寬了DNN的應(yīng)用范圍。早期的DNN應(yīng)用打開了算法發(fā)展的大門。它激發(fā)了許多深度學(xué)習(xí)框架的發(fā)展(大多數(shù)都是開源的),這使得眾多研究者和從業(yè)者能夠很容易的使用DNN網(wǎng)絡(luò)。

目前,DNN已經(jīng)廣泛應(yīng)用到各個領(lǐng)域,包括圖像和視頻、語音和語言、醫(yī)藥、游戲、機器人、自動駕駛等領(lǐng)域??梢灶A(yù)見的是,深度神經(jīng)網(wǎng)絡(luò)必將也會在金融(例如交易,能源預(yù)測和風(fēng)險評估),基礎(chǔ)設(shè)施建設(shè)(例如結(jié)構(gòu)安全性,交通控制),天氣預(yù)報和事件檢測中有更多深入的應(yīng)用。

THE END
廣告、內(nèi)容合作請點擊這里 尋求合作
ai
免責(zé)聲明:本文系轉(zhuǎn)載,版權(quán)歸原作者所有;旨在傳遞信息,不代表砍柴網(wǎng)的觀點和立場。

相關(guān)熱點

9月6日消息,據(jù)國外媒體報道,人工智能正在成為新加坡這個獨立島國如何參與新興技術(shù)的一個典型案例。
業(yè)界
9月5日消息,美圖公司在廣州美博會正式發(fā)布其自主研發(fā)的全景式AI皮膚檢測儀:美圖宜膚(meitueve)。
業(yè)界
據(jù)小米MIUI官方,小米AI實驗室AutoML團隊就自動化神經(jīng)架構(gòu)搜索(NAS)方面取得的成果,在近日首度接受了媒體公開采訪。
人工智能
7月25日消息,阿里巴巴旗下半導(dǎo)體公司平頭哥正式發(fā)布玄鐵910(XuanTie910),稱玄鐵910目前業(yè)界性能最強的一款RISC-V處理器。
業(yè)界
AI+5G+IoT的組合,雖然打開了語音芯片的新想象力。但是在這個邏輯里,未來能占據(jù)廣泛市場的芯片模式,絕不是今天智能音箱芯片的模樣。語音芯片本身,變化才剛剛開始。
人工智能

相關(guān)推薦

1
3